Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(4): 855-865, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36689738

RESUMEN

The SARS-CoV-2 main protease (Mpro) plays an essential role in viral replication, cleaving viral polyproteins into functional proteins. This makes Mpro an important drug target. Mpro consists of an N-terminal catalytic domain and a C-terminal α-helical domain (MproC). Previous studies have shown that peptides derived from a given protein sequence (self-peptides) can affect the folding and, in turn, the function of that protein. Since the SARS-CoV-1 MproC is known to stabilize its Mpro and regulate its function, we hypothesized that SARS-CoV-2 MproC-derived self-peptides may modulate the folding and the function of SARS-CoV-2 Mpro. To test this, we studied the folding of MproC in the presence of various self-peptides using coarse-grained structure-based models and molecular dynamics simulations. In these simulations of MproC and one self-peptide, we found that two self-peptides, the α1-helix and the loop between α4 and α5 (loop4), could replace the equivalent native sequences in the MproC structure. Replacement of either sequence in full-length Mpro should, in principle, be able to perturb Mpro function albeit through different mechanisms. Some general principles for the rational design of self-peptide inhibitors emerge: The simulations show that prefolded self-peptides are more likely to replace native sequences than those which do not possess structure. Additionally, the α1-helix self-peptide is kinetically stable and once inserted rarely exchanges with the native α1-helix, while the loop4 self-peptide is easily replaced by the native loop4, making it less useful for modulating function. In summary, a prefolded α1-derived peptide should be able to inhibit SARS-CoV-2 Mpro function.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Cisteína Endopeptidasas/química , Péptidos/farmacología , Péptidos/metabolismo , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Antivirales/química
2.
J Am Chem Soc ; 143(44): 18766-18776, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34724378

RESUMEN

Protein-folding can go wrong in vivo and in vitro, with significant consequences for the living organism and the pharmaceutical industry, respectively. Here we propose a design principle for small-peptide-based protein-specific folding modifiers. The principle is based on constructing a "xenonucleus", which is a prefolded peptide that mimics the folding nucleus of a protein. Using stopped-flow kinetics, NMR spectroscopy, Förster resonance energy transfer, single-molecule force measurements, and molecular dynamics simulations, we demonstrate that a xenonucleus can make the refolding of ubiquitin faster by 33 ± 5%, while variants of the same peptide have little or no effect. Our approach provides a novel method for constructing specific, genetically encodable folding catalysts for suitable proteins that have a well-defined contiguous folding nucleus.


Asunto(s)
Ubiquitina/química , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...